Write a Blog >>
PLDI 2020
Mon 15 - Fri 19 June 2020

In this paper, we propose a multi-modal synthesis technique for automatically constructing regular expressions ($\emph{regexes}$) from a combination of examples and natural language. Using multiple modalities is useful in this context because natural language alone is often highly ambiguous, whereas examples in isolation are often not sufficient for conveying user intent. Our proposed technique first parses the English description into a so-called $\emph{hierarchical sketch}$ that guides our programming-by-example (PBE) engine. Since the hierarchical sketch captures crucial hints, the PBE engine can leverage this information to both prioritize the search as well as make useful deductions for pruning the search space.

We have implemented the proposed technique in a tool called Regel and evaluate it on over three hundred regexes. Our evaluation shows that Regel achieves 80% accuracy whereas the NLP-only and PBE-only baselines achieve 43% and 26% respectively. We also compare our proposed PBE engine against an adaptation of AlphaRegex, a state-of-the-art regex synthesis tool, and show that our proposed PBE engine is an order of magnitude faster, even if we adapt the search algorithm of AlphaRegex to leverage the sketch. Finally, we conduct a user study involving 20 participants and show that users are twice as likely to successfully come up with the desired regex using Regel compared to without it.

Thu 18 Jun

Displayed time zone: Pacific Time (US & Canada) change

16:00 - 17:00
16:00
20m
Talk
Multi-modal Synthesis of Regular Expressions
PLDI Research Papers
Jocelyn (Qiaochu) Chen University of Texas at Austin, USA, Xinyu Wang University of Michigan at Ann Arbor, USA, Xi Ye University of Texas at Austin, USA, Greg Durrett University of Texas at Austin, USA, Işıl Dillig University of Texas at Austin, USA
16:20
20m
Talk
Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting
PLDI Research Papers
DongKwon Lee Seoul National University, South Korea, Woosuk Lee Hanyang University, South Korea, Hakjoo Oh Korea University, South Korea, Kwangkeun Yi Seoul National University, South Korea
16:40
20m
Talk
CacheQuery: Learning Replacement Policies from Hardware Caches
PLDI Research Papers
Pepe Vila IMDEA Software Institute, Spain, Pierre Ganty IMDEA Software Institute, Spain, Marco Guarnieri IMDEA Software Institute, Spain, Boris Köpf Microsoft Research, n.n.